Correlation thresholds in the steady states of particle systems and spin glasses
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A growing body of theoretical and empirical evidence shows that the global steady-state distri-
butions of many equilibrium and nonequilibrium systems approximately satisfy an analogue of the
Boltzmann distribution, with a local dynamical property of states playing the role of energy. The cor-
relation between the effective potential of the steady-state distribution and the logarithm of the exit
rates determines the quality of this approximation. We demonstrate and explain this phenomenon
in a simple one-dimensional particle system and in random dynamics of the Sherrington—Kirkpatrick
spin glass by providing the first explicit estimates of this correlation. We find that, as parameters of
the dynamics vary, each system exhibits a threshold above and below which the correlation dramat-
ically differs. We explain how these thresholds arise from underlying transitions in the relationship
between the local and global “parts” of the effective potential.

I. INTRODUCTION

The steady-state distributions of many physical sys-
tems favor a relatively small number of special states.
For example, this is true of proteins, which tend to adopt
conformations of low energy [I], as well as active matter
systems, like swarms of interacting robots that sustain
long-lasting, near-periodic “dances” [2]. For proteins,
and for systems in thermal equilibrium in general, the
Boltzmann distribution explains that states with lower
energy are exponentially favored. More precisely, the
steady-state probability 7(x) of a state x satisfies

m(z) = e PH@) /7, (1)

in terms of inverse temperature [, energy or Hamilto-
nian H, and partition function Z =3 e~ BH(z),

The explanation of order that the Boltzmann distri-
bution provides is powerful because the energy H(z) is
a “local” property of state z, in the sense that it can
be determined without observing long trajectories of the
system to states far from z. For example, the energy
of a protein conformation can be estimated from its co-
ordinates using molecular dynamics force fields [3]. In
contrast, the steady-state distribution of a nonequilib-
rium system is “global” because estimating it from a tra-
jectory generally requires the observation of multiple re-
turns to state x, which can entail visits to distant states
(e.g., see [M]). For nonequilibrium steady states, there
can be no local explanation of order analogous to the
one the Boltzmann distribution provides, as Landauer
explained [5]. Essentially, the issue with nonequilibrium
steady states is that changes to the dynamics in one part
of the state space can affect the relative probability of
states in another [6].
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FIG. 1. Local-global correlations. (a) The Boltzmann dis-
tribution entails perfect correlation p between the effective
potential of an equilibrium steady state and the energy of
a uniformly random state. (Each mark corresponds to one
state.) (b) For many equilibrium and nonequilibrium steady
states, a different local property of a state, called rattling, is
highly correlated with the effective potential.

Despite this barrier, a local dynamical property of
states called “rattling” predicts the steady-state distri-
butions of many nonequilibrium systems [2] [(HI0]. In-
formally, rattling is a measure of how quickly the system
exits the vicinity of a state, like a diffusion coefficient
in abstract state space, but for processes that are not
necessarily diffusive. In their study of robot swarms,
Chvykov et al. observed that plotting the effective po-
tential — log 7m(x) against the rattling R(z) of discretized
swarm configurations z produced a roughly linear scat-
ter [2]. This observation is analogous to an approxi-
mate Boltzmann distribution because the effective poten-
tial and H(z) are exactly collinear in equilibrium steady
states (Fig. [1)).

These observations motivate the study of correlations
between the effective potential of a steady state and lo-
cal properties of the states. In recent work [I1], we de-
rived a general formula for the kind of correlation that
Chvykov et al. observed, which Fig.[Tp depicts. It applies
to Markov jump processes, which are commonly used to
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model the dynamics underlying equilibrium and nonequi-
librium steady states [I2HI6]. The formula can be used to
derive lower bounds on the typical correlation exhibited
by broad classes of steady states, such as those of reac-
tion kinetics on disordered energy landscapes [I7]. To
complement these results, which are somewhat abstract,
this paper provides the first concrete calculations of the
local—global correlation. Although we focus on two spe-
cific models, we expect that our approach will apply to
many other models as well.

II. LOCAL-GLOBAL CORRELATION IN
MARKOV JUMP PROCESSES

A. Defining local-global correlation

We consider a Markov jump processes on a finite set .S
of discrete states, defined by a transition rate matrix
(Wa.y)z,yes. The probability p,(t) of finding the system
in state y after ¢ units of time solves the master equation

py(t) =Y Wy palt).

zeS

We assume that the transition rates strongly connect the
state space, which guarantees the existence and unique-
ness of the steady-state or stationary distribution m =
limy_,00 p(t) [I8]. Our focus is on the relationship be-
tween the effective potential — log 7(x) and the logarithm
of the exit rates, defined by

q(z) = Z Way-

Yy y#T

The quantity log ¢(z) is the analogue of rattling R(z) for
Markov jump processes [I1]. Accordingly, to understand
the collinearity of scatter plots like Fig. [Ip, we analyze
the correlation between the effective potential and log
exit rate of a uniformly random state X in S:

p = Corr(—log 7(X),log¢(X)). (2)

We assume that 7 and ¢ are non-constant, to ensure

that p is well-defined. For reference, the linear corre-

lation of random variables U and V with positive, finite

variances is defined as the normalized covariance
Cov(U,V)

Corr(U,V) = Var(U) Var (V) ®)

The covariance equals Cov(U,V) = E(UV)-E(U)E(V),
in terms of the expected value E(U) of U and variance
Var(U) = Cov(U,U).

B. The effective potential’s local and global parts

Associated with the preceding continuous-time Markov
jump process is a discrete-time Markov jump process,
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FIG. 2. Contour plot of Eq. . Contours and shading indi-
cate the value of p for a given pair (r,p) € [0,00) x [—1,1].

defined by normalizing the transition rates out of each
state:

This process also has a unique stationary distribution 7,
which is related to 7 and g by

7(z)/q(x)
dyesTW)/aly)

Intuitively, the limiting fraction 7(x) of time spent in
state x is proportional to the limiting fraction 7(z) of
visits made to x, multiplied by the typical duration of a
visit to x, which equals 1/¢(z). Taking the logarithm of
both sides of Eq. shows that

(5)

m(x) =

—logm(X) = —log7(X) + log ¢(X) + constant.  (6)

Following the discussion in Section Eq. @ justifies the
view that —log7(X) and logq(X) are the global and
local “parts” of the effective potential.

The authors in [I1] used Eq. (6) to derive the formula

1+ pr
p=—F— (7)
1+ 2pr 4 r?

in terms of
5 = Corr(— log #(X), log ¢(X)),

the correlation between the global and local parts, and

. Var(log7(X))
Var(log ¢(X))’

the ratio of their standard deviations.
[-1,1] and r € [0, 00).

In principle, it should be as difficult to calculate p and r
as it is to directly calculate p using Eq. . The value of
Eq. @ is therefore not in more easily calculating p. It
does, however, imply a useful lower bound of p in terms

Note that p €



of r alone, which is tractable for broad classes of dynam-
ics [I7). The virtue of Eq. is that it explains how
high correlation arises, in terms of the relationship be-
tween the parts of the effective potential.

Fig. |2l which visualizes Eq. 7 shows that there are
two ways for the correlation p to be close to 1. First,
if the global part of the effective potential varies far less
than the local part (i.e., r < 1), then p &~ 1, regardless
of the value of p. Second, if the parts of the effective
potential are highly correlated (i.e., p ~ 1), then p ~ 1,
regardless of the value of r. For p to be negative, the
parts of the effective potential must be sufficiently anti-
correlated: p < —1/r.

III. PARTICLES ON A RING

We first demonstrate the calculation of p for a toy
model of two particles moving clockwise around a dis-
crete ring. We show that the local-global correlation is
either close to 1 or close to —1 depending on a parameter
that biases the particles’ motion.

Consider two identical particles that move clockwise
around a ring with L+ 2 discrete sites, where L > 1 is an
integer. Each particle jumps clockwise to the next open
site, at a rate that depends on the number of open sites
“ahead” of it. Specifically, if there are y > 1 open sites
in the clockwise direction from one particle to the next,
then the first particle jumps at a rate of a¥, where o > 0
is a parameter of the dynamics. If there are no open
sites ahead of it, then the particle does not move. We
arbitrarily choose one particle to be the “first” particle,
and use = to denote the number of open sites to the sec-
ond. Note that z, which takes values in S = {0,...,L},
completely determines the state of the system.

Based on the preceding description, the transition rate
Wy from x to y satisfies

a” y=x—1,
Wyy=1alk™ y=z+1, (8)
0 y¢{.’1f—1,.’17+1}7

for z,y € S. As before, we denote the stationary distri-
bution of the Markov chain with these transitions rates
by m. The corresponding exit rates are

OéL
q(x) = Z vay = a® +aL—x

Yy yFe

x € {0, L},

x ¢ {0,L}.
Note that although W, ,, 7, and ¢ depend on the param-
eter o, we omit it from the notation.

The main result of this section is an estimate of the
local-global correlation that the particle system exhibits.

Theorem 1. For every a # 1, the correlation satisfies

V15

sign(ar — 1) (1+O(L™Y)), (9)
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FIG. 3. Local-global correlations of particles on a ring. (a)
The effective potential scattered against the log exit rate of
each state for the dynamics in Eq. with L = 100 and
a = 1.1. (b) The correlation as a function of L and « for
L = 25k, k € {2,...,6}. Dashed lines indicate p = ++/15/4.

Theorem 1| says that p(a) is close to V15/4 ~ 0.97
when o > 1 and close to —\/5/4 when o < 1, for all
sufficiently large L in terms of «. (In Eq. @, we use the
standard asymptotic notation O(L~!) to denote a quan-
tity that is at most a constant multiple of L~! in absolute
value for all sufficiently large L.) Fig. [3h shows a repre-
sentative scatter plot of the effective potential against
the log exit rates when a > 1. For such values of «,
the correlation is already close to its limiting value when
L =100. For a < 1, p approaches —\/ﬁ/él more slowly
(Fig. Bp).

The error term in Eq. @ arises in part from approx-
imating the exit rate g(x) by a™®{=L=%} when a > 1
and a™{#L=2} when o < 1. The proof of Theorem
in Appendix [B] finds that this approximation is suffi-
ciently accurate when L is large relative to the quantity
1/4/|la* — 1|. Hence, if @ > 2 or o < 1/2, for example,
then L only needs to be larger than some constant.

A. The correlation of a birth—death process

We outline the calculation of p in this subsection, defer-
ring some details to Appendix [B] We start by observing
that the number of open sites z is a birth—death process,
because a jump from x to y is only possible if y = x £ 1.
It is well known that the stationary distribution of such

a process has the form
— ﬁ Wy—1,y (10)

Wy,y—l

y=1

Alternatively, one can check that this 7 satisfies detailed
balance, which verifies that it is the stationary distribu-
tion. Substituting the rates from Eq. into Eq. ,
we find that the stationary distribution satisfies

T OéLf(yfl) : (L—2y41)

7T("E) z(L—x
(0) ~ H ay B = o,

= ~y=1




A
y

log q(x)

Llog o

o
0

e
>

scaled exit rates
(=]
~
§
scaled exit rates
o o

0.8 % 7

® 0.6 log q(x §
<« o2 d®) \
Lloga
0.5 0 .
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
x/L x/L

FIG. 4. Comparison of logg(z) (blue points) and log g(x)
(black points), scaled by 1/Lloga, for (a) a = 1.1 and (b)
a = 0.9. The blue scatters correspond to L € {25,50,75}
(darker blue indicates higher L); the black scatter has L =
100. Note the points in (b) indicated by red arrows, which
all blue scatters share.

Concerning the exit rates, we note that when L and
|log «| are large, ¢ is roughly equal to

~( ) amax{w,L—w} a>1,
xTr) = .
q amln{z,sz}

a<l,

the logarithm of which has a simpler form than log g(z).
Fig. |4 compares ¢ and ¢. In particular, it highlights the
fact that g(x) underestimates ¢(z) for some values of z
and «, and overestimates it for others. However, aside
from when o < 1 and « € {0, L} (indicated by red arrows
in Fig.[dp), () approximates ¢(z) increasingly well as L
increases. For the moment, we treat this approximation
as exact and consider the case of a > 1.

By substituting the expressions for 7w (x) and ¢(z) into
Eq. , and by dropping the common factors of log «,
which make no difference to the correlation, we find
that p is approximately equal to

p = Corr(U,V), (11)

where U = —X (L—X) and V = max{X, L—X}. We can
calculate this correlation using Eq. and the following
simple estimates:

~ 1
Cov(U,V) = —L* + O(L?),

96
1
_ 7[]4 L3
Var(U) 180 +O(L%), and
]
Var(V) = @LQ + O(L).

The covariance, for example, can be calculated to leading
order in L by treating X as a continuous uniform random

variable on [0, L]. The estimate follows from

~ 1 rL 11
E{UV) =~ —Z/O (L — z) max{x, L — z}dx = f%LS,

1 [t 1
E(U)%—Z/0 m(L—x)dmz—éLQ, and

~ 1 [F 3
E(V) = 7/ max{z, L — z}dx = ZL'

Substituting the covariance and variance estimates into
Eq. shows that

_ (L3/96) (1+O(L™) V5
P T 4

(1+0(L™Y).

In the o < 1 case, we instead set V = min{X,L — X}.
The same argument shows that p = ,@(1 + O(L™Y))
because Cov(U, V) changes sign, while Var(V) is un-
changed.

As we prove in Appendix p is a close approximation
to p when L is sufficiently large as a function of a. The
error of this approximation, combined with the preceding
estimates of p, establishes Theorem

B. A threshold in the correlation of the parts

Recall that Eq. @ explains how the correlation p arises
in terms of p, the correlation between the global and
local parts of the effective potential, and r, the ratio of
their standard deviations. In particular, Eq. @ implies
that p approximately equals p when r > 1 (i.e., the global
part varies far more than the local part). As we now
explain, for any « # 1, the particle system has r > 1
for all sufficiently large L. The threshold in p(«) that
Theorem [1] identifies therefore arises from an underlying
threshold in the the correlation between the parts of the
effective potential.

The quantities p and r depend on the stationary distri-
bution 7 of the d/igcrete—time Markov jump process with
transition rates W . We could calculate 7 directly,
as we calculated 7, using the fact this process is also of
birth—death type. However, it is simpler to combine the
fact that 7(x) is proportional to m(z)q(z) (see Eq. (7))
with the approximation of ¢ by g:

am(L—z)—i—min{a:,L—m}

R o<1,
7T($) X ﬂ—(x)q(x) ~ {ax(L—;c)+max{a:,L—:c}

a > 1.

Using the approximation of ¢ by ¢ a second time, we
find that r satisfies

_\/Var(log?f(X))N\/Var(U—f/)
| Var(logg(X))

Var(V)

As in the previous subsection, we denote U = —X (L—X)
and V = sign(a — 1) max{X,L — X} for a # 1. The



variance estimates for U and V then imply that

Var(U — V) L4/180
\/ Var(‘7) B \/ L2/48 (1 "
= j—% (1+0(L™).

We find that, for any fixed a # 1, » > 1 for all sufficiently
large L. As a consequence of Eq. @, p is primarily de-
termined by the correlation p between the parts of the
effective potential.

To establish that p exhibits a threshold in «, we use
the preceding expressions for 7 and ¢:

O(L™h)

p = Corr (—log7(X),log¢(X)) ~ Corr (U — v, IN/)

Since the variance of U grows faster with L than the
variance of V' does, the correlation of U — V with V is

approximately that of U and V for all sufficiently large L.
The proof of Theorem [1| then shows that

Corr (U — ‘N/,‘N/) ~ V15

sign(a —1)(1+ O(L™1)),

for all & # 1. We conclude that the threshold in p arises
because the local and global parts of the effective poten-
tial themselves undergo a transition in correlation as «
varies.

IV. SPIN-GLASS DYNAMICS

For our second example, we analyze a significantly
more complicated family of dynamics associated with the
Sherrington—Kirkpatrick (SK) spin glass. The dynamics
will be random, so the correlation p will be random as
well. Like Theorem [I] the main result of this section
identifies a threshold in p, as a parameter of the dynam-
ics varies. Although the threshold in p is similar to that
of the particle system, our subsequent analysis of p and
r shows that the underlying relationship between the lo-
cal and global parts of the effective potential is entirely
different.

For an integer N > 1 and inverse temperature 5 > 0,
the SK model is the random probability distribution 7
on the N-dimensional hypercube S = {—1,1}¥ that as-
signs to a configuration x € S the Boltzmann probability
m(x) x exp(—BH(x)), in terms of a random Hamilto-
nian H. The Hamiltonian of x is defined as

H(.’E): Z gijmixj,

i,5€[N]

in terms of random couplings (gi;);,je[n] of the coordi-
nates, which are independent and identically distributed
(i.i.d.) normal random variables with mean 0 and vari-
ance 1/N.

We consider a family of Glauber dynamics for the SK
model, like those commonly used in Monte Carlo simu-
lations thereof [I9]. The dynamics are defined in terms
of a parameter A € [0, 1] as

W) = POHE@)=(1=NH(y))

Yy~ . (12)

Note that y ~ x indicates that y neighbors z in the
hypercube, meaning they differ in exactly one coordi-
nate. This family interpolates between two extremes, in
a sense. The first extreme entails transitions from x to y
at a rate of Wgy = ¢ AHW)  In other words, jumps
occur at a rate that depends on the energy of the desti-
nation. The second extreme entails rates that depend on
the originating state: Wj’y = efH()

We are again interested in the relationship between the
exit rates

o)=Y W2,

Y y~x

and the stationary distribution, which is the Boltzmann
distribution 7 for every A € [0,1]. To verify that 7 is
the stationary distribution, note that it satisfies detailed
balance for a generic A:

n(@)W,, = e PHEHOHE@)-A-NHW) /7
— efBH(yHB(AH(y)7(17,\)1{(;1;))/Z _ w(y)W’\

Since the dynamics depend on the random Hamilto-
nian H, the correlation defined by

p(A) = Corr(— logm(X), log * (X)),

is a random variable. The main result of this section is
an estimate of p that holds at high temperatures, with a
probability that tends to 1 as the dimension N grows.

Theorem 2. Let N > 3 be an integer and set A\ (N) =

%. As B — 0, the correlation satisfies

p(\) = sign(\ — \,) (1 + IA—\/NAI : 0(5)> (13)

for every X\ # \., with a probability of at least 1—O(N~2)
as N — oo.

Informally, Theorem [2| means that, in high enough di-
mensions and at high enough temperatures, the correla-
tion is approximately sign(A — \,) for every A # A, with
a probability close to 1 over the randomness of the cou-
plings. According to Eq. , the correlation abruptly
increases from —1 to 1 as A increases past A, (Fig. [5]).
Note that A, lies in [0,1] only if N > 5. In particular,
Eq. implies that the correlation is nonnegative re-
gardless of the value of A when the dimension N is at
most 4 (Fig. [fk). As in Theorem [I] our estimate of the
correlation features an error term that arises from an ap-
proximation of the exit rates by a function that is easier
to analyze.
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FIG. 5. Local-global correlations of SK model dynamics. The
effective potential scattered against the log exit rate of each
state for (a) A = 0.50 and (b) A = 0.05. (c) The correlation
as a function of A for N = 2* (green curve) and N = 2'°
(blue curve). The curves show the mean correlation over 50
and 10 independent trials, respectively, with corresponding
error bars of +1 standard deviation. Dashed lines linearly
interpolate the formula in Eq. ( . ) Plot of (r,p) pairs
for A € [0,1] with N = 29 fixed. Each mark represents the
average over 10 independent trials of p and r for a particular .
Shading and contours indicate the corresponding value of p.
The arrow indicates the direction of increasing A. In all cases,

B=1

A. Calculating the correlation at high temperature

For the moment, assume that the random Hamilto-
nian H is given, in which case the only randomness is
in the uniformly random state X € S. We begin by
expressing the exit rates as

q,\(w): Z eﬁ(z\H(z)f(lf)\)H(x(k)))v
kE[N]

in terms of #(®), the element of S that agrees with x
except in the kth coordinate:

k
SU( ) = (‘Tla"'axk—la_zkvxk-i-h'"azN)'

We then separate a factor of e#A=DH() from the rates,
which results in

qk(x) _ 63(2>\—1)H(z)-‘r5z4(ac)7 (14)

in terms of the quantity

Az) = Slog 3 e PU-NHG) (),

/8 kE[N]
By substituting Eq. (14) and the Boltzmann distribution
7(x) o< e PHE) into Eq. , we find that the correlation

satisfies
p = Corr (H(X),(2A — 1)H(X) + A(X)). (15)

The correlation is therefore determined by the variances
of H(X) and A(X), as well as their covariance.

While the variance of H(X) can be calculated ex-
actly, the quantities involving A are more complicated.
We will resort to estimates of these quantities in the
high-temperature setting, based on the following idea.
A short calculation shows that, since the couplings are
i.i.d. normal random variables with mean 0 and variance
1/N, the N2V random energy differences of the form
H(z™) — H(z) that define A will rarely exceed v/N in
absolute value. Hence, if 8 is sufficiently small in terms
of N, then A(z) will be close to

A(z) = BlogN——Z ™) — H(x)),

kE[N]

uniformly in z. We will show that the closeness of A
and A implies that p is close to

7 = Corr (H(X), 2\ — ) H(X) + Z(X)) .

Accordingly, instead of calculating p directly, we will cal-
culate p and then bound the error incurred by doing so.

We implement this strategy in Appendix [C} where we

further show that the variance of A and its covariance
with H are exactly

Var(A(X)) = (4(1 — \)/N)? Var(H (X)) and
Cov(H(X), A(X)) = (4(1 — \)/N) Var(H (X)).

Using these estimates, for A # \,, we calculate p to be



p(A)

(2X — 1) Var H(X) + Cov(H

(X), A(X))

(2A — 1) +4(1 — \)/N

"~ /Var H(X)((2A— 1)2 Var H(X) + Var A(X) + 2(2A — 1) Cov(H(X), A(X)))

=sign((2\ — 1) + 4(1 — \)/N) =sign(A — \,).  (16)

T /@A 12 +82h - )1 - NN+ 41 - N/NZ

This explains the formula in Theorem [2 aside from the
error term, the control of which addresses the randomness
of the couplings. We provide a full proof in Appendix [C}

B. Interpreting the correlation threshold

As in Section[[ITB| we turn to the relationship between
the parts of the effective potential. By Eq. , 7 (x) is
proportional to m(z)g*(z), hence

M z) ox e PRA-NH(2)—A)
The correlation p therefore equals
Corr (2(1 = N H(X) — A(X), (2A — 1)H(X) + A(X)),

while the parameter r satisfies

~Var(2(1 - VH(X) — A(X))
"\ Var(2) - DH(X) + A(X))

We could calculate p and r directly, like we did in Sec-
tion |III B} Instead, we note that Eq. implies an ana-
1—ps

logue of Eq. for p:
. Var(log (X))
=—————— where s=4/c———2".
S \/ Var(log ¢(X))

Note that p & p when s > 1. Approximating A by A and
then using the covariance and variance estimates from the
preceding subsection, we find that

B Var H(X)
"7\ Var (2\ - DH(X) + A(X))
1 1

~ —

Tl -1 +4(1 - N/N| A=A

Heuristically, when A is sufficiently close to the threshold
at A, s is much larger than 1, in which case p is close
to p. We conclude that, as in Theorem |1} the transition
from negative to positive p is mediated primarily through
a similar change in p (Fig. [Fd).

V. DISCUSSION

Steady states that exhibit high local-global correlation
satisfy an approximate analogue of the Boltzmann distri-
bution (Fig. . In this case, a simple local property of

(

a state—the logarithm of the exit rate—plays the role
of energy. The virtue of this approximation is that exit
rates are often easy to estimate. Indeed, the exit rate
of a state is the reciprocal of the average holding time
in it. To estimate the exit rate, it therefore suffices to
repeatedly initialize the system in the state and average
the times it takes to leave. This means that it is un-
necessary to observe long trajectories of the system to
faraway states, which is generally required of estimating
the steady-state distribution [4].

While a major goal of local-global correlation is to
explain order in broad classes of nonequilibrium steady
states, the concept applies equally well to equilibrium
steady states. For this reason, and to facilitate our cal-
culations of p, we analyzed reversible dynamics with sta-
tionary distributions that are explicitly known. For some
equilibrium steady states, the Hamiltonian and the log-
arithm of exit rates coincide. For example, when A = 1,
the exit rates of the SK model dynamics satisfy
q(z) = ePH(®) and therefore p = 1. More generally, high
local—global correlation can be valuable for understand-
ing equilibrium steady states because exit rates may be
readily estimable even when the Hamiltonian is compli-
cated or unknown.

Clearly, many steady states cannot exhibit high local—-
global correlation. It is therefore important to under-
stand precisely why and how typically p is close to 1.
The general formula for p in Eq. somewhat abstractly
explains that there are two “ways” for p to be close to 1
(Section [II B)). These ways are defined in terms of key
parameters p and r, which together characterize the re-
lationship between the local and global parts of the ef-
fective potential (Fig. . Then, to understand how typi-
cally p is close to 1, one could estimate the typical values
of p and r under a probability distribution on a class
of steady states. However, these quantities are generally
difficult to calculate, and our recent work instead resorts
to bounding their expected values [17].

In this context, Theorems [I] and [2] serve two purposes.
First, they provide explicit estimates of the local—global
correlation in two families of dynamics, one deterministic
and one random. The proofs of these estimates demon-
strate an approach to calculating p that we expect will
apply to many other dynamics. Second, they show that
the property of a steady state exhibiting high local-global
correlation can depend sensitively on parameters of the
dynamics (Fig.[3p and Fig.[ft). In both cases, the thresh-
olds in p arise from underlying thresholds in the correla-
tion p between the parts of the effective potential. Such



a threshold can also arise when r, which measures the
relative variance of the parts, crosses 1 (e.g., see Fig. 6
of [I1]).

An important goal for future work is to develop means
of estimating or bounding p in situations where the sta-
tionary distribution 7 is inexplicit, as is generally true
of dynamics that violate detailed balance. For example,
recent work in this direction compares the stationary dis-
tributions of nonreversible Markov chains with random
transition rates to the probability distribution that is in-
versely proportional to the exit rates [20]. One possible
strategy is to use the Markov chain tree theorem [21]
to express and manipulate w, which has been integral

to several recent results in stochastic thermodynamics
[15] 22] 23].
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Appendix A: Approximation of correlation

The correlations p in Theorems [[] and 2] are difficult
to calculate exactly, due to the form of each model’s exit
rates. Instead, we calculate the correlations p resulting
from a close approximation of the exit rates, which is
simpler to analyze. The next lemma states the intuitive
fact that, so long as this approximation is sufficiently
accurate, p and p are close. In the statement and its
proof, we write 1+ a to denote the interval [1 —a, 1+ a]
and b = 1 4+ a to mean that b belongs to this interval.

Lemma A.1. LetU, V, and V be random variables with
finite, positive variances, that satisfy

| Cov(U, V)| > ¢y/Var(U) and Var(V) > ¢,

for some ¢ > 0. If Var(V — V) < /4, then

Corr(U,V) = Corr(U,V) (1 + %\/Var(V - ‘7)) .

Proof. Let € =V —V and a = (Var(e)/ Var(V))Y/2. The
Cauchy—Schwarz inequality implies that

Cov(U,V) = Cov(U,V) + Cov(U,e)
= Cov(U,V)(1+a).
The variance of V' analogously equals

Var(V) = Var(V) + Var(e) + 2 Cov(V )
= Var(V) (1 +a® +2a).

Substituting these expressions into Eq. shows that

Corr(U,V) = Corr(U,V) <1—|—1a1:12a> .

The assumed bounds on Var(V) and Var(e) imply that
a < 1/4. As a consequence, the parenthetical expression
is always positive, and some algebra further shows that
the interval it represents is contained in [1 — 3a,1 + 5a).
This completes the proof, since a < /Var(e)/c by the

assumed lower bound of Var(V). O

Appendix B: Proof of Theorem

The proof outline in Section [[ITTA] was incomplete be-
cause, instead of calculating p, we calculated

5 = Corr(~ log r(X), log 4(X)),
where

a>1,

_ amax{m,sz}
q(SIJ) = amin{x,L—x} a< 1.
We now use Lemma [A71] to obtain the estimate of p in
Theorem [1f from our estimate of p.

Proof of Theorem[] Recall that p = Corr(U, V), where

U_ —log m(X) :logq(X).

and V
log o log o

(B1)

We analogously define p = Corr (U, ‘7), in terms of

7 _ logq(X)
log «v

andset e=V — V.

Eq. and the covariance estimates that immediately
follow it show that

5= Corr(U, V) = Y2 sign(a — 1) (1 + O(L™)).
The same estimates show that U and V satisfy the hy-
potheses of Lemma with ¢ = 0L, for a small positive
number . To apply the conclusion of Lemma it
therefore suffices to show that e has variance of less than
§2L%/4. In fact, Var(e) is much smaller as a function
of L. We consider the cases of @« > 1 and a < 1 sepa-
rately.
By definition, when o > 1,

() = 0 x € {0, L},
= log (1 +amin{z,L—x}—max{m,L—ac}) T §é {O,L}.

Since log(1 + x) < z for all z > —1, the second moment
of € satisfies

1 L—-1
E 2\ < 2(min{.7;,L—a;}—max{x,L—;c}).
(=7 22¢

r=1



Simplifying the geometric sum, and using the fact that
Var(¢) < E(e?), we find that

20t

Var(e) < i)

This bound shows that, as long as L is sufficiently large
as a function of «, then Var(e) < §2L?/4. Lemma
then implies that

~ 5v/2 at
pp<1i5L3/2 a_1>

When «a < 1, the only difference is that the minimum
and maximum that appear in the preceding expression
for € are swapped. Analogous reasoning then shows that
Var(e) < 2/(L(1 — a*)). Hence, Var(e) < §2L?/4 for all
sufficiently large L as a function of a, and so Lemma[A]]
implies that the correlations are related by

_ 5v/2 1
p=pl1+ =% —x|.
SL3/2\/1T—at

In both the @ > 1 and o < 1 cases, by taking L larger
in terms of « if necessary, we can ensure that

p=p(1+0(L™h).

Together with the estimate of p, this proves that

o= "2 sign(a ~1) 1+ 0L ™).

Appendix C: Proof of Theorem

To complete the proof of Theorem [2| outlined in Sec-
tion we need to bound the difference of p and p,
and justify the expressions for the variance of A(X) and
its covariance with H(X), which we used to calculate p.
For the former task, we aim to apply Lemma with
e = A(X)—A(X), which requires a bound on Var(e). We
emphasize that Var(e) is a random variable, because the
variance is taken with respect to the uniformly random
state X, not the randomness of the couplings (gi;)i je[n]
that define the energy.

We will bound above Var(e) on the event that energy
differences of the form Dy (z) = H(2®)) — H(z) are at
most O(v/N) in absolute value, across all states © € S
and coordinates k € [N]. Recall that

1
A(z)==1o e PU-MDk(@)  anq

Az) = llogN— % Z Dy (z).

’8 ke[N]

We will assume that 3 is small enough as a function of N
so that, when this even occurs, the summands that ap-
pear in A(z) approximately satisfy

e PU=NDEE) 1 = B(1 — \)Dy(z),  (C1)

uniformly for z € S. Approximating the summands of
A(z) in this way results in A(z), hence € is the error

associated with Eq. (C1J).

1. Control of energy differences

The next lemma uses the fact that the Dy (x) are cen-
tered normal random variables to prove that all energy
differences are O(v/N) in absolute value, with probabil-
ity 1 as N — oo. Throughout this section, as in the
statement of Theorem [2| we assume that N > 2 is an
integer.

Lemma C.1. The largest absolute energy difference sat-
isfies

max
z€S, kE[N

: |Di(x)| < 4V/N,
with a probability of at least 1 — N2,

Proof. By definition, H(z) = }_; ;c(n) 9ijziz;j- The en-
ergy difference Dy (z) therefore satisfies

Dp(z)= > gijmz(-k)l‘§-k)_ > gmuiwm
4,JE[N] I,me[N]
= Z —2(gjk + grj)Tj Tk (C2)
JEINN{kK}

The couplings g, are i.i.d. N'(0,1/N) random variables,
so the preceding expression shows that Dy (z) is a sum of
N —1i.id. N(0,4/N) random variables. Hence, if 0% =
4(1 — &), then Dy(z)/o is a standard normal random
variable, which satisfies the tail bound

P (|Dy(z)/o] > t) <279/, t>0.  (C3)

Anticipating a sum of the tail bound over N2V possible
choices of state z and coordinate k, we set

t=+/(2log2)N + 8log N,

and define Ex(x,k) to be the event that Dy(z)/c ex-
ceeds t in absolute value:

En(z, k) ={|Dy(x)/o] > t}.

We use En to denote the event that some En(x, k) occurs,
and bound the probability that it occurs as

> P(En(z,k)
z€S, kE[N]
< N2V . P (|D1(1)/0| > t)
S N2N . 26—(10g2)N—410gN — 2N_N—4 S N_Q.

P(En) <



The first inequality is a union bound over z and k.
The second bound holds by the definition of the event
En(z, k) and the fact that the kth energy difference of
state & has the same distribution as the first energy dif-
ference of state 1 = (1,...,1) € {—~1,1}". The third
inequality is due to the tail bound in Eq. . The last
inequality holds by the assumption that N > 2. Hence,
except with a probability of 1 — N2,

|Dy(z)] < ot <4VN.

max
z€S, kE[N]

2. Approximation of A by A

Following the discussion at the beginning of Ap-
pendix [C} we proceed to bound the variance of A(X) —
Z(X) We do so using the approximation in Eq. ,
which is justified for small 8 due to Lemma [C.]] We
continue to assume that N > 2 is an integer.

Lemma C.2. As 8 — 0, the quantity e = A(X) — Z(X)
satisfies

1
N\/Var(e) =

with a probability of at least 1 — N 72,

Proof. Suppose that the largest energy difference Dy (x)
is at most 4v/N in absolute value. According to
Lemma this event occurs with a probability of at
least 1 — N~2. When it occurs, we can take 8 — 0 and
expand A as

A(z) = %log > (1-B1=A)Di(z)+ N -0(8%)
ke[N]
%logN—lT > Di(z)+ N-0(B).

ke[N]

Hence, e = N - O(f) and therefore

1 1 2) —
N\/Var(e) < N\/E(6 ) =0(B)

3. Variance and covariance calculations

The next inputs to the proof of Theorem [2| are the
following expressions for the variances and covariance of
H(X) and A(X). We will use these expressions both to
calculate p and to show that p is close to p.
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Lemma C.3. Given couplings (gi;)i je(n], the variances

and covariance of H(X) and A(X) satisfy
Var(H(X)) = Z (9i5 + 951)%,
1<i<j<N

Var(A(X)) = b Var(H(X)), and
Cov(H(X), A(X)) = bVar(H (X)),

where b =4(1 — \)/N.

We note that, since H is a pseudo-Boolean function,
i.e., a real-valued function on the hypercube {—1,1}", it
is possible to calculate Var H(X) using Parseval’s the-
orem [24]. Instead, we calculate the moments directly,
both for the sake of exposition and to facilitate the sub-
sequent calculation of Var(A(X)).

Proof of Lemma[C.3 We start with the variance of
H(X)= Z”E[N] 9i; X X;. Its first moment equals

Z gzg X X Z Giis
i,jEIN i€[N]

because E(X;X;) equals 1 when ¢ = j, and 0 otherwise.
The second moment satisfies

Z 95 9 B(X; X X0 X)),
45,k 1E€[N]

E(H(X)?) -

The quantity E(X;X,;X,X;) equals 0 unless {3,j,k, 1}
contains one or two distinct coordinates, in which case

it equals 1. By considering the various cases, we find
that
E (H(X)?) = Z gii + Z(giigjj + 95 + 9ii951)-

ie[N] i#j

Hence, the variance satisfies

= Z(gizj + 9ij9ji) = Z (9ij + gji)z-

i#] 1<i<j<N

Var(H(X))

Next, we calculate Var(A(X)), as follows:

Var(A(X)) = Var (; log N — % > Dk(X)>

ke[N]
(1_Var< Z Dy (X )
ke[N]
4(1 — M\
= % Var <Z(gij + gji)Xin>
i#£]
16(1 — A)?
= %Var (Zginin>
i#j

= b* Var(H(X)).



The first equality is due to the definition of Z(X ). The
second holds because the constant (log N)/S does not
affect the variance. The third follows from the formula
for Di(x) in Eq. (C2)). The fourth holds because the sums
of g;;X;X; and g;;X;X; are equal. The final equality is
due to the fact that the quantities ), £ 9i; X;X; and
H(X) differ only by the constant >,y gii, which does
not affect the variance.

By simply repeating these steps for the covariance, we
find that

Cov(H(X), A(X)) = bVar(H(X)),

which concludes the proof. O

Note that, as a consequence of Lemma [C.3] we know
the distribution of Var(H (X)) exactly.

Lemma C.4. Let N > 2 be an integer. The distribution

of Var(H(X)) is Gamma(~ 5= 1),

Proof. Since the couplings are i.i.d. N'(0, %) random vari-
ables, the quantity (g;; + g;;)* has a Gammal(3, +) dis-

tribution. By Lemma | Var(H(X)) is a sum of
w independent such random variables, hence it has
a Gamma(w, +) distribution. O

A consequence of Lemma[C.4]is that Var(H (X)) has a
mean of N —1 and a variance of 4(1 — &) with respect to
the randomness of the couplings, so it rarely takes values
less than (N — 1)/2. Specifically, the standard Chernoff
bound for gamma random variables implies that

N -1

P <Var(H(X)) < ) < e eNIN=D), (C4)

where ¢ = (log2 — 1/2)/4 =~ 0.048.

4. Conclusion

We now combine the results from the two preceding
subsections to prove Theorem

Proof of Theorem[3 For the moment, assume that the
couplings are given. We write p as Corr(U, V'), where

U=H(X) and V=02X-1)H(X)+ A(X).
Analogously, we write g = Corr(U, V), in terms of

V =(2\—1H(X)+ A(X).
By Lemma the corresponding covariance satisfies

Cov(U,V) = (2A — 1) Var(H(X)) 4+ Cov(H(X), A(X))
= ((2A — 1) + b) Var(H(X)),

11

in terms of b = 4(1 — A)/N. Similarly, the variance of V
satisfies

Var(V) = (2\ — 1)? Var(H (X))

+2(2X — 1) Cov(H(X), A(X)) + Var(A(X)),
so Lemma implies that

Var(V) = ((2A — 1)2 +2(2\ — 1)b + b?) Var(H (X))
= ((2\ = 1) +b)? Var(H(X)).

These expressions for Cov(U, V) and Var(V) show that
| Cov(U,V)| > ¢y/Var(U) and Var(V)>c?, (C5)

in terms of ¢ = |2\ — 1 + b|y/Var(H (X)). Note that
a—14b=2(1-2) (-
- N * /9

so ¢ depends on the absolute distance of A from the lo-
cation of the threshold A, in Theorem [}

Next, to verify the hypotheses of Lemma we ad-
dress the randomness of the couplings. Lemma and
Eq. (C4) together imply that the event consisting of

%\/Var(e) =0(p) as f — 0 and
N -1
2

Var(H(X)) >

occurs with a probability of at least 1 — O(N~2) as
N — oo. When it does, ¢ is positive for all A # A,
because

2 N -1 2
c>21—— ]| A=XJy/ —— > —=|A = A|VN.

Note that the second inequality follows from the simple
bounds (1 — 2/N) > 1/3 and /(N —1)/2 > /N/3,
which hold for all N > 3. By Eq. (C5), U and V satisfy
the hypotheses of Lemma [A-T] for this choice of ¢, for all
A # Av. Lemma[AT] then implies that, as 8 — 0,

p:ﬁ(l:&:i Var(e)) =5<1+ M{NA* .ow),

for all such A. This completes the proof, since p =

sign(A — A,) for all A # A, by Eq. . O
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